反正弦函数的导数,反正切函数的导数推导过程

反正弦函数的导数,反正切函数的导数推导过程

  反正弦函数的导数,反正切函数的导数推导过程是正切函数的求导(acrtanx)’=1/(1+x2),而arccotx=π/2-acrtanx,所以(arccotx)’=(π/2-acrtanx)’=-(acrtanx)’=-1/(1+x2)的。

  关于反正弦函数的导数,反正切函数的导数推导过程以及反正弦函数的导数,反正切函数的导数公式,反正切函数的导数推导过程,反正切函数的导数是多少,反正切函数的导数推导等问题,小编将为你整理以下知识:

反正弦函数的导数,反正切函数的导数推导过程

  正切函数的求导(acrtanx)’=1/(1+x2),而arccotx=π/2-acrtanx,所以(arccotx)’=(π/2-acrtanx)’=-(acrtanx)’=-1/(1+x2)。什么是反正切函数

  正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx或y=tan-1x,叫做反正切函数。

  它表示(-π/2,π/2)上正切值等于x的那个唯一确定的角,即tan(arctanx)=x,反正切函数的定义域为R即(-∞,+∞)。

  反正切函数是反三角函数的一种。

  由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。

  注意这里选取是正切函数的一个单调区间。

  而由于正切函数在开区间(-π/2,π/2)中是单调连续的,因此,反正切函数是存在且唯一确定的。

  引进多值函数概念后,就可以在正切函数的整个定义域(x∈R,且x≠kπ+π/2,k∈Z)上来考虑它的反函数,这时的反正切函数是多值的,记为y=Arctanx,定义域是(-∞,+∞),值域是y∈R,y≠kπ+π/2,k∈Z。

  于是,把y=arctanx(x∈(-∞,+∞),y∈(-π/2,π/2))称为反正切函数的主值,而把y=Arctanx=kπ+arctanx(x∈R,y∈R,y≠kπ+π/2,k∈Z)称为反正切函数的通值。

  反正切函数在(-∞,+∞)上的图像可由区间(-π/2,π/2)上的正切曲线作关于直线y=x的对称变换而得到,如图所示。

  反正切函数的大致图像如图所示,显然与函数y=tanx,(x∈R)关于直线y=x对称,且渐近线为y=π/2和y=-π/2。

求反正切函数求导公式的推导过程、

  因为函数的导数等于反函数导数的倒数。

  arctanx 的反函数是tany=x,所以tany=(siny/cosy)纳敬=[(siny)cosy-siny(cosy)]/(cosy)^2=(cos^2y+sin^2y)/cos^2y=1/cos^2y ………….tany=siny/cosy=根号下(1-cos^2y)/cosy,,,,,,,,,,两边平方得tan^2y=(1-cos^2y)/cos^2y……因为上面tany=x………所以cos^2=1/(x^2+1)……..所以由上面塌悄(tany)=1/cos^2y的得(tany)=x^2+1然后再用团茄渣倒数得(arctany)=1/(1+x^2))

未经允许不得转载:惠生活 » 反正弦函数的导数,反正切函数的导数推导过程

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏